CSCIl2202: Lecture 11
Machine Learning

Finlay Maguire (finlay.maquire@dal.ca)
TA: Ehsan Baratnezhad (ethan.b@dal.ca)
TA: Precious Osadebamwen (precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca

Email from Registrar at 5pm on Friday:

I’'m writing to share an important update regarding final exam scheduling. Due to recent staffing transitions — including our usual exam coordinator being on
medical leave — and the broader challenges posed by the University’s hiring freeze, we recently identified an oversight in our scheduling process. While our new
team member handling exams has been incredibly diligent and professional, they were unaware of the University policy prohibiting exams from being scheduled
on Easter Saturday.

As a result, we sincerely apologize that your exam was inadvertently scheduled on Easter Saturday, April 19, 2025. To correct this, we are rescheduling all exams
originally set for that date to Sunday, April 13, 2025. This adjustment was selected to avoid disruptions to student travel and residence move-out schedules. Our
office will also reach out to residences to request clemency where this change may impact student accommodations or final exam scheduling.

We will notify affected students of this change by Thursday next week and will ensure they have all necessary information.

We deeply regret this oversight and truly appreciate your understanding as we work through this transition. If you have any questions or concerns, please don’t
hesitate to reach out.

- Due to inflexibility on behalf of the registrar we are moving to an open-book take-home final that will take place at
the originally scheduled date and time + an additional hour (April 19th at 15:30-18:30)

Plan for Next/Final Week of Class

e Lecture:

o Y2 graphs/networks in python - no associated lab material - interest/relevance to post-reqs
o Y final exam material discussion

e Tuesday Practical: time to work on practice exam with TA support
e Thursday Practical: TA recitation going through some practice questions

Overview

e Machine Learning
Traditional Machine Learning in Python (Scikit-Learn)
e Deep Learning in Python (PyTorch) - not covered

e Supervised Learning
o Logistic Regression

e Unsupervised Learning
o K-means clustering
o t-SNE embedding/projection

What is Machine Learning?

What is Machine Learning?
THIS 1S YOUR MACHINE (EARNING SYSTEM?

° “Machine Learning is the field of study that gives the computer the YUP! YOU POUR THE DATA INTO THIS BIG
ability to learn without being explicitly programmed” PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

\WHAT IF THE ANSWJERS ARE LJRONG?)
e “Acomputer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its JUST STIR THE PILE UNTIL
performance at tasks in T, as measured by P, improves with THEY START LOOKING RIGHT.
experience E.”

Task (play checkers)
e Experience (data):
o games played by the program (with itself)
° Performance measure:
o How often does it win

° Training models which identify patterns in data

Types of Machine Learning

e SUPERVISED - predict y from X (classification/regression)
o Labeled classes e.g., predict the label of final exam grade FROM other grades in class)
o Minimise error in predicting the label for each data point (similar to RSS in linear regression)
o Feedback: information about the error predicting label correctly is used to train classifier

e UNSUPERVISED - find groups in X (clustering/dimensionality reduction)
o Input may be labeled or unlabelled
o Classifier develops the classification/clustering scheme independently from class labels

e SEMI-SUPERVISED - blend of the above
e REINFORCEMENT - Identify optimal moves / strategies in a search space

Machine Learning vs Statistics Exploratory

Many shared methods

“Which student attributes
are most associated with
weight room use?”

e Difference in focus/priorities/culture
e Statistics ~ tries to understand how
outcome was generated by data

Statistics

Machine Learning

ML infers/learns A process
for linking data to outcome

Alternative framing: Data Modelling

vs Algorithmic Modelling

ML Pitfalls (can be):

O
O

Less rigorous/principled
Prone to reinventing the wheel

ML Benefits (can be):

@)
@)

More flexible
Less prescriptive/intimidating

“Is there an association
between student grades
and weight room use?”

“How busy will the weight
room be in the next hour?”

Confirmatory Predictive

Stati:stics

Data Generating
Y(Process ;X

Machine Learning

https.//stats.stackexchange.com/questions/442128/machine-learning-vs-statistical-learning-vs-statistics

But Machine Learning can be used to create hypotheses!

Deductive: |

“Condition X, causes Y”

- Collect data

- Perform (typically) frequentist statistical
tests

- Reject or confirm null hypothesis

Hypothesis or
general premise
Empirical
observations

https.//opened.cuny.edu/courseware/lesson/14/student/?task=3

Deductive
Reasoning

But Machine Learning can be used to create hypotheses!

Deductive: Inductive:
- “Condition X, causes Y” - Collect data
- Collect data

Perform (typically) frequentist statistical

tests

Reject or confirm null hypothesis

- ldentify patterns in the data
- Observe X and Y seem connected

somehow
- Quantify strength of association e.g.,
prediction performance
Hypothesis or
general premise
Inductive Deductive
Reasoning Reasoning

Empirical
observations ‘

https.//opened.cuny.edu/courseware/lesson/14/student/?task=3

Traditional Machine Learning in Python

e Scikit-learn:
o Very widely used
Gold-standard traditional ML package
Fantastic documentation ->
Relatively fast (numpy)
Simple model
Many compatible contribution packages
Limited neural network support

o O O O O O

from sklearn.MODULE import CLASSIFIER
model = CLASSIFIER()

model.fit(x, y)

just x for unsupervised

y_pred = model.predict(x)

performance = model.score(x, y)

Classification
Identifying which category an object belongs to.

Applications: Spam detection, image recognition.
Algorithms: Gradient boosting, nearest neighbors,
random forest, logistic regression, and more.

o "

LeE RN
bl Nl
7l 4 g

Dimensionality reduction

Reducing the number of random variables to consider.

efficiency.
Algorithms: PCA, feature selection, non-negative
matrix factorization, and more...

Examples

Regression

licting a lued attribute
with an object.

Applications: Drug response, stock prices.
Algorithms: Gradient boosting, nearest neighbors,
random forest, ridge, and more...

Predicted average energy trsnser during the week

Model selection

Comparing, validating and choosing parameters and
models.

Applications: Improved accuracy via parameter
tuning.
Algorithms: Grid search, cross validation, metrics, and

Clustering

Automatic grouping of similar objects into sets.

Customer ion, grouping
experimem outcomes.
Algorithms: k-Means, HDBSCAN, hierarchical

clustering, and more...

[2EWES

Preprocessing
Feature extraction and normalization.

Applications: Transforming input data such as text for
use with machine learning algorithms.
P ing, feature ion, and

more...

Examples

Deep Learning in Python - not covered

PyTorch

o Popularin latest research
o More python-like and dynamic graphs
o Originally Facebook/Meta

TensorFlow

o Popular in product/industry
o More verbose (although Keras APl now)
o Originally Google

Many others: Keras, Theano, Caffe,
o Generally slower and/or legacy libraries

Traditional machine learning

Features:
* QRS amplitude

* T wave inversion
* RRinterval
.

Manual feature extraction Classification

Deep le

NG N N N
K2l 2la2<
re extraction and classifi

Featu cation

Classification
® Class1
® Class2

Supervised Learning

Predicting Labels (Classification) or Values (Regression)

Labeled Data

D00

Trainin ML Model Predictions
ANON J

O D \ /_’@7 A Triangle

Lo -
Labels O Circle

O 0.

Bactangle Clicke Goal: find the model parameters that most correctly predict
A O the labels (e.g., RSS for intercept/slope in linear regression)

Triangle Hexagon

https://medium.com/@dhara732002/supervised-machine-learning-a-beginners-quide-9ac0b07eccbhb

Goal is a model that predicts class in a generalizable way

Sources: [4][5][6]{7](8][9][10][11] view - talk - edit

Many ways to assess “correctness’

We want model to generalise to new date
(i.e., not overfit to training data)

Classification

Regression

Overfitting

Actual condition

Total
population
=P+N

Positive
(P) [a]

Negative
(N)id

Prevalence
P

P+N

Accuracy
(ACC)
_TP+TN

~ P+N

Balanced
accuracy
(BA)

_ TPR+TNR
===

Predicted condition

. - Predicted
Predicted positive A
negative
False
True positive (TP), negative (FN),
hitlP] miss,

underestimation

True negative

False positive (FP), (TN),
false alarm, overestimation correct
rejection(®!

o o) False omission
Positive predictive value (PPV),
rate (FOR)
FN

precision
iR =INTIN
= =1-FDR TN +FN
T =1-NPV
Negative
predictive

False discovery rate (FDR)

P value (NPV)
=gprp=1-FPY __N
TN+FN
=1-FOR
Fowlkes-
F1 score Mallows index
_2PPVXTPR _ 2TP
= PPV TPR = ITP:FP+ TN UL
= VPPV x TPR

Informedness,
bookmaker informedness
(BM)
=TPR+TNR -1

True positive rate (TPR),
recall, sensitivity (SEN),
probability of detection,
hit rate, power

TP.
=5 =1-FNR
False positive rate
(FPR),
probability of false alarm,
fall-out
type | error [f]
FP
=x =1-TNR
Positive likelihood ratio

(LR+)
_ TR
= FPR

Markedness (MK), deltaP
(ap)
=PPV+NPV -1

Matthews correlation
coefficient (MCC)

= VTPRXTNR X PPV x NPV

- VFRR X FPR < FOR X FDR

Prevalence

threshold (PT)
VTPR x FPR - FPR

=T TPR-FPR

False negative rate
(FNR),
miss rate
type Il error [€]
FN
=p =1-TPR

True negative rate
(TNR),
specificity (SPC),
selectivity

™
= =1-FPR

Negative likelihood

ratio (LR—)
_FNR
~ TNR

Diagnostic

odds ratio (DOR)
LR+

LR-

Threat score (TS),
critical success
index (CSl), Jaccard

index
_ TP
“TP+FN+FP

Holdout part of data to evaluate generalised performance

Training set: Used to train the model (typically 70-80% of the data)

Testing set: Used to evaluate the model's performance on unseen
data (typically 20-30%)

Dataset

Randomly shuffle the dataset
Split the data into training and testing portions

Training

Testing

Train the model using only the training data
Evaluate the model's performance on the testing data

o N =

from sklearn.model _selection import train_test split
from sklearn.MODULE import CLASSIFIER

X_train, X_test, y _train, y test = train_test split(X, y, test _size=0.2, random_state=42)

model = CLASSIFIER()
model.fit(X_train, y_train)
performance = model.score(x_test, y_test)

Logistic Regression

Linear Regression Logistic Regression
[]
100 patients with surgical site infections. = i sesssyssees N
Straight Line &=t \ S-Curve ==

Predicted
dependent
variable
remains
inside the

We’ve measured how many bacteria are
present in the wound (bacterial load)

Predicted
dependent
variable can go
beyond the 0
and 1 limits

/

range of 0
and 1

Dependent Variable
Y-Axis

Each wound is treated with the same amount
of cefoxitin (antibiotic)

« Dependent Variable <
Y-Axis

n
o
<
1]
o

X-Axis
We Want tO prediCt Whether treatment iS Independent Variable Independent Variable
successful or not (y=1 or y=0) based on :
bacterial load (x A
) §g=8Bo+pPr-T1+P2-22+...)
Linear regression not appropriate: i
_ 0'(2:) = T T e sigmoid = lambda z: 1 / (1 + np.exp(-z))
Predictsy <0 andy > 1 14
Heteroscedasticity y now predicts a probability: P(Y = 1|X)

Solution: Logistic Regression We can round § to get our 1 or O prediction

Logistic Regression

def log_loss(y_true, y pred):
return -(1/len(y_true)) * np.sum(\
y_true * np.log(y_pred)
+ (1 - y_true) * np.log(1 - y_pred))
learning_rate = 0.1
for 1 in range(num_iterations):
linear_model = np.dot(X, slope) + intercept
y_pred = sigmoid(linear_model)
ds = (1/m) * np.dot(X.T, (y_pred - y))
di = (1/m) * np.sum(y_pred - y)
slope = slope - learning_rate * dw
intercept = intercept -

learning_rate * db

cost = log_loss(y, y_pred)

Our linear regression loss/cost needs updated:

L—S’S—E=—Z(bo+b1*$()]— y(i))?

Use log-loss instead:

L= _% Z(yz

=1

-log(s) + (1 — ;) - log(1 — 9;))

Fit LR using gradient descent:

g_g _ % D (i) — (@)

= (1/n)*XT-(Y—Y)

Scikit-Learn makes this very simple!

def log_loss(y_true, y pred):
return -(1/len(y_true)) * np.sum(\
y_true * np.log(y_pred)
+ (1 - y_true) * np.log(1 - y_pred))
learning_rate = 0.1
for 1 in range(num_iterations):
linear_model = np.dot(X, slope) + intercept
y_pred = sigmoid(linear_model)

ds = (1/m) * np.dot(X.T, (y_pred - y))

di

(1/m) * np.sum(y_pred - y)
slope = slope - learning_rate * dw
intercept = intercept - learning_rate * db

cost = log_loss(y, y_pred)

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X_train, X_test,
y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

1r = LogisticRegression()
lr.fit(X_train, y_train)
performance = lr.score(x_test, y_test)

Many different options e.g., regularisation

class sklearn.linear_model.LogisticRegression(penalty='12', *, dual=False,
tol=0.0001, €=1.0, fit_intercept=True, intercept_scaling-1, class_weight=None,
random_state=None, solver='lbfgs', max_iter=100, multi_class='deprecated’,
verbose=0, warm_start=False, n_jobs=None, 1l1_ratio=None) [source]

Many model choices => comparing and tuning

Dataset

Training Testing

Training Sets Test Set

Iteration 1 Errory

Iteration 2 Error,
Iteration 3
Errory

Iteration 4

Iteration 5 Errors

I

Using test set to tune/compare
will lead to overfitting

Cross-validation: split training
into pieces and train on % and

e | e COMpPAre on % (repeat for

mean/variance estimate

Ordinary Least Squares

Logistic Regression

—| egressi } Multivariate Adaptive Regression Spl

Locally Estimated Scatterplot Smoothing (LOESS)

kNearest Nelghbour (kNN)

Learning Vector Quantization (LvQ)
[based Methods J

Ridge Regression

T sso
Regularization Methods
Elastic Net

Classification and Regresslon Tree (CART)

terative Dichotomiser 3 (ID3)

a5
Decision Tree ||
Random Forest

Gradient Boosting Machines (GBM)

Nalve Bayes

Averaged One-Dependence ESUIMAOrs (AODE)
Bayesian
Bayeslan Bellef Network (BEN)
Support Vector Machines (SVM)
Kernel Methods

Radlal Basls Function (RBF)

Linear Discriminate Analysis (LDA)

Apriort algorithm

Association Rule Learning Eclat algorithm

perceptron

Back-propagation

Artificial Neural Networks

Restricted Boltzmann Machine (REM)

Hopfleld Network

Deep Bellef Networks (DBN)

Deep Learning convolutional Network

Stacked Auto-encoders

Principal Component Analysls (PCA)

Partial Least Squares Regresslon (PLS)

Sammon Mapping
imensionality Reduction

Projection Pursult

Boosting

Bootstrapped Aggregation (Bagging)

AdaBoost

;—I Ensemble Methods |' ‘Stacked Generallzation (blending)

Gradient Boosting Machines (GBM)

m Random Forest

Machine Learning Cross-Validation

from sklearn.linear_model import LogisticRegressionCV

from sklearn.model_selection import train_test_split

X_train, X _test,

y train, y test = train_test split(X, y, test size=0.2,
random_state=42)

1r = LogisticRegressionCV(cv=5, random state=42)

1r.fit(X_train, y_train)

performance = lr.score(x_test, y test)

Unsupervised Learning: Clustering

Clustering as an optimization problem

Using a glider with a shadowgraph camera we've taken images of
lots of fish and then measured their lengths and widths.

Now we want to group these fish into size categories to explore
trophic sizes

Find k-centroids (cluster centers) that minimise the total distances
from n data points

import numpy as np

X = np.column_stack((fish_lengths,

fish_widths))

Many different clustering algorithms

MiniBatch Affinity Spectral Agglomerative Gaussian
KMeans Propagation MeanShift Clustering Ward Clustering DBSCAN HDBSCAN OPTICS BIRCH Mixture
w"*\ f\""\ fw’*\ f“""\‘ ‘”\ Zx‘-‘\ w"*\ w’m\ .»-'“\ M\ r“\ag
@f @; @; ‘Qx Qf %ﬁ: @; @J @.ﬁ Qf' ‘I@;
SO o oot "e s < e et et e e e
.00s| .16s| .09s| .05s| .02s .02s .00s| .01s 425 .01s .00s|

v v lfﬂ g

g g* g g*

I 00| Ev aadf| TY oal| TW o3| Y o1sl| g

S | 08 | a8 | 50E | 5 | 58

B b BE B B B
.00s| .12s| .06s| .03s .01s|

https://scikit-learn.org/stable/modules/clustering.html

Clustering as an optimization problem: k-means

rng = np.random.default_rng(42)
O. Initialize cluster centers

M1y L2y -« o5 Pk

k =3
centroids = np.random.choice(X.shape[0],
k,

replace=False)

centroids = x[centroids]

Clustering as an optimization problem: k-means

def dist(pointl, point2):
0. Initialize cluster centers

1. Assign observations to
closest cluster center

return np.sqrt(np.sum((pointl - point2) ** 2))

while True:
centroid_hist = [centroids]

2 argmin| |y — x|

clusters = [[] for _ in centroids] Inferred label for obs i, whereas

supervised learning has given label y;
for fish in X:

i = np.argmin([dist(fish, c) for c in centroids])

clusters[i].append(fish)

Clustering as an optimization problem: k-means

while True:
centroid_hist = [centroids]
clusters = [[] for _ in centroids]
for fish in X:
i = np.argmin([dist(fish, c) for c in centroids])
clusters[i].append(fish)
for ix, cluster in enumerate(clusters):

centroids[ix] = np.mean(cluster, axis=1)

0.
. Assign observations to

Initialize cluster centers

closest cluster center

Revise cluster centers ./‘
as mean of assigned

observations

1
szn—j in

i:zi::j

Clustering as an optimization problem: k-means

while True:
cemtreal et = [camreids 1 0. Initialize cluster centers
clusters = [[] for _ in centroids] 1. ASSlgn Observatlons to

closest cluster center

for fish in X:

2. Revise cluster centers
i = np.argmin([dist(fish, c) for c in centroids]) as mean Of assigned

clusters[i].append(fish) observations
for ix, cluster in enumerate(clusters): 3 Repeat 1+2 Untll
convergence
centroids[ix] = np.mean(cluster, axis=1)
if centroilds == centroid_hist[-1]:
break

centroid_hist.append([centroids])

Clustering as an optimization problem: k-means

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, n_init="auto")

0. Initialize cluster centers

kmeans. Fie(x) 1. Assign observations to
kmeans. labels_ closest cluster center
array([1, 1, 1, 0, O, 2], dtype=int32) 2. Revise cluster centers
as mean of assigned
observations
kmeans.predict([[0, 0], [12, 3]11]) 3 Repeat 1 +2 Until
array([1, 0], dtype=int32) convergence

kmeans.cluster_centers_

array(ff10., 2.7, [1., 2.], [3., 4.]])

Looking at really high-dimensional data?

Pairplots useful but only pairwise so miss complex shapes

th_mm

s

bill_de;

species
® Adelie
® Chinstrap
® Gentoo

body_mass_g

T T T I‘v T
30 40 50 €0 15 20 175 200 25 2000 4000 6000
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

Many dimensions to few: Manifold learning, Ordination,
Decomposition, Dimensionality reduction

Isomap Embedding Spectral Embedding

Original S-curve samples

T-distributed Stochastic

Neighbor Embedding

Why is this hard?

High dimensional data is sparse

a) 1D - 4 regions

b) 2D - 16 regions c) 3D - 64 regions
: P @ :

) Ql oo o;oooé. [y
0 5 10 15 20

High dimensional space is counterintuitive

Orthogonality -> Band-size to capture 99% of the volume of a sphere:

= 100

Mass becomes increasingly “shell-like”

No representation is perfect

MERCATOR

GALL-PETRS GOODE-HOMOLOSINE
VR 5 = '_ = =

B _= =S = ——

% \+

WATERMELON '
ATEER ROBINSON

So, how can we do it?

Principal Component Analysis - Simplest Method

Reorient the data in the direction of maximal

variance A Q

Variable #1

||]
Center the data B M T
Calculate the covariance matrix e ee

Eigen vectors
of

Perform eigendecomposition A
Sort and select n principal components
Project the data onto the reduced space

o > 0 h =

Original data Lower-dimensional
(high-dimensions) embedding
PC2

PCA dimensionality
reduction

PC1
I

Principal component #2

s () cov_matrix

Eigen values

Principal component #1

e Maximize variance along PC1
¢ Minimize residuals along PC2

X_centered = X - np.mean(X, axis=0)

np.cov(X_centered, rowvar=False)

Eigen vectors
of

A eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)

idx = np.argsort(eigenvalues)[::-1]
components = eigenvectors[:, idx[:n_components]]

X_reduced = X_centered @ components

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)

https://www.biorender.com/template/principal-component-analysis-pca-transformation

Trying to conserve global and local structure

Healthy Pathological
Tissues
Single-cell RNA-seq l
Expression profile clustering l
Cell-type
maps & (9} & o0 © % °
o® %o o (N
00 (%) 00 o Y09
0% ¢ p <> O &8
W ...
© ;i -
© Disease-associated
_ (o) Ocells
Types of analyses
_a =

Between tissues
* Cell-type compositions
* Altered transcription

in matched cell types

Within cell type

* Stochasticity, variability of transcription
* Regulatory network inference

* Allelic expression patterns

* Scaling laws of transcription

Between cell types

« |dentify biomarkers

o (Post)-transcriptional
differences

https://www.nature.com/articles/nmeth.2764

e Single-cell RNA-seq tells us how much
each of millions of cells are expressing
10,000s of genes

genel, gene2, gene3, gene4...
Cell1=[0.2, 0.5, 1.0, 0.01..]
Cell2=[1.0, 0.5, 0.2, 0.91..]

e Lots of types of cells and lots of variability
in what cells are doing

e Don’t know what each type of cell is during
sequencing

e Need to cluster/project all this noisy data
to lower dimensions to identify patterns

t-SNE (stochastic neighbour embedding) and UMAP

Stage 1 Stage 2
a. Randomly project b. Determine similarities c. Move the points around until the similarities between points
cells as points on a low- between points in low dimension resemble the similarities in high dimensions

dimensional plot

@)
O
(@) @
o (@]
Each data pointis a Determine similarities Determine similarities
single cell between cells between points

Lo - —— from sklearn.manifold import TSNE
Pairwise probability distribution in all dimensions X = np.array([[0, ©, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])

Pairwise probability distribution in few dimensions nodel = TSNE(n_components=2, learning rate='auto', init='random', perplexity=3)
e Stochastic minimisation of KL divergence X_embedded = model.fit_transform(X)

between distributions)[(Zemg‘]?ddEd'Shape

https.//www.scdiscoveries.com/blog/knowledge/what-is-t-sne-plot/

Summary

e Machine Learning: training models with label
Scikit-Learn easy to use with great documentation/tutorials

e Supervised Learning: predicting output label (number or class) from data
o Logistic Regression - linear regression with a sigmoid function and gradient descent
o Split data into training and test data to evaluate generalisability of model
o Cross-validation is used to tune a model/compare models without overfitting to test data

e Unsupervised Learning: finding structure in data without using labels
o Clustering - inferring clusters in your dataset
m K-means - pick k random points as “centroids” and move them to minimise the average
distance of all points from these centroids.
o Embeddings/Projections - finding a lower dimensional representation of the original data
m PCA - use eigendecomposition of covariance matrix to rotate data in orthogonal axes of
maximal variation
m {-SNE - move points around randomly to minimise difference between multivariate
probability distribution in original dimension and lower dimensional embedding

