
CSCI2202: Lecture 11
Machine Learning

Finlay Maguire (finlay.maguire@dal.ca)
TA: Ehsan Baratnezhad (ethan.b@dal.ca)

TA: Precious Osadebamwen (precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca


Email from Registrar at 5pm on Friday:
I’m writing to share an important update regarding final exam scheduling. Due to recent staffing transitions — including our usual exam coordinator being on 

medical leave — and the broader challenges posed by the University’s hiring freeze, we recently identified an oversight in our scheduling process. While our new 

team member handling exams has been incredibly diligent and professional, they were unaware of the University policy prohibiting exams from being scheduled 

on Easter Saturday.

As a result, we sincerely apologize that your exam was inadvertently scheduled on Easter Saturday, April 19, 2025. To correct this, we are rescheduling all exams 

originally set for that date to Sunday, April 13, 2025. This adjustment was selected to avoid disruptions to student travel and residence move-out schedules. Our 

office will also reach out to residences to request clemency where this change may impact student accommodations or final exam scheduling.

We will notify affected students of this change by Thursday next week and will ensure they have all necessary information.

We deeply regret this oversight and truly appreciate your understanding as we work through this transition. If you have any questions or concerns, please don’t 

hesitate to reach out.

- Due to inflexibility on behalf of the registrar we are moving to an open-book take-home final that will take place at 

the originally scheduled date and time + an additional hour (April 19th at 15:30-18:30)



Plan for Next/Final Week of Class

● Lecture: 
○ ½ graphs/networks in python - no associated lab material - interest/relevance to post-reqs
○ ½ final exam material discussion

● Tuesday Practical: time to work on practice exam with TA support
● Thursday Practical: TA recitation going through some practice questions



Overview

● Machine Learning
● Traditional Machine Learning in Python (Scikit-Learn)
● Deep Learning in Python (PyTorch) - not covered

● Supervised Learning
○ Logistic Regression

● Unsupervised Learning
○ K-means clustering
○ t-SNE embedding/projection



What is Machine Learning?



What is Machine Learning?

● “Machine Learning is the field of study that gives the computer the 
ability to learn without being explicitly programmed” 

● “A computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if its 
performance at tasks in T, as measured by P, improves with 
experience E.”

● Task (play checkers)
● Experience (data): 

○ games played by the program (with itself)
● Performance measure: 

○ How often does it win

● Training models which identify patterns in data

https://xkcd.com/1838/



Types of Machine Learning

● SUPERVISED - predict y from x (classification/regression)
○ Labeled classes e.g., predict the label of final exam grade FROM other grades in class)
○ Minimise error in predicting the label for each data point (similar to RSS in linear regression)
○ Feedback: information about the error predicting label correctly is used to train classifier

● UNSUPERVISED - find groups in x (clustering/dimensionality reduction)
○ Input may be labeled or unlabelled
○ Classifier develops the classification/clustering scheme independently from class labels

● SEMI-SUPERVISED - blend of the above
● REINFORCEMENT - Identify optimal moves / strategies in a search space



https://stats.stackexchange.com/questions/442128/machine-learning-vs-statistical-learning-vs-statistics

y XData Generating 
Process

Statistics

Machine Learning

Machine Learning vs Statistics
● Many shared methods
● Difference in focus/priorities/culture
● Statistics ~ tries to understand how

outcome was generated by data
● ML infers/learns A process 

for linking data to outcome
● Alternative framing: Data Modelling 

vs Algorithmic Modelling

● ML Pitfalls (can be): 
○ Less rigorous/principled
○ Prone to reinventing the wheel

● ML Benefits (can be): 
○ More flexible
○ Less prescriptive/intimidating



But Machine Learning can be used to create hypotheses!
Deductive:

- “Condition X, causes Y”
- Collect data
- Perform (typically) frequentist statistical 

tests
- Reject or confirm null hypothesis

https://opened.cuny.edu/courseware/lesson/14/student/?task=3

Inductive:

- Collect data
- Identify patterns in the data
- Observe X and Y seem connected 

somehow
- Quantify strength of association e.g., 

prediction performance



But Machine Learning can be used to create hypotheses!
Deductive:

- “Condition X, causes Y”
- Collect data
- Perform (typically) frequentist statistical 

tests
- Reject or confirm null hypothesis

https://opened.cuny.edu/courseware/lesson/14/student/?task=3

Inductive:

- Collect data
- Identify patterns in the data
- Observe X and Y seem connected 

somehow
- Quantify strength of association e.g., 

prediction performance



Traditional Machine Learning in Python
● Scikit-learn: 

○ Very widely used
○ Gold-standard traditional ML package
○ Fantastic documentation ->
○ Relatively fast (numpy)
○ Simple model
○ Many compatible contribution packages
○ Limited neural network support

from sklearn.MODULE import CLASSIFIER

model = CLASSIFIER()

model.fit(x, y) 

# just x for unsupervised

y_pred = model.predict(x)

performance = model.score(x, y)



● PyTorch
○ Popular in latest research
○ More python-like and dynamic graphs
○ Originally Facebook/Meta

● TensorFlow
○ Popular in product/industry
○ More verbose (although Keras API now)
○ Originally Google

● Many others: Keras, Theano, Caffe, 
○ Generally slower and/or legacy libraries

Deep Learning in Python - not covered



Supervised Learning



Predicting Labels (Classification) or Values (Regression)

https://medium.com/@dhara732002/supervised-machine-learning-a-beginners-guide-9ac0b07eccbb

Training 

Goal: find the model parameters that most correctly predict 
the labels (e.g., RSS for intercept/slope in linear regression)

 



Goal is a model that predicts class in a generalizable way 

Many ways to assess “correctness”

We want model to generalise to new date 
(i.e., not overfit to training data)



Holdout part of data to evaluate generalised performance

Training set: Used to train the model (typically 70-80% of the data)

Testing set: Used to evaluate the model's performance on unseen 
data (typically 20-30%)

1. Randomly shuffle the dataset
2. Split the data into training and testing portions
3. Train the model using only the training data
4. Evaluate the model's performance on the testing data

from sklearn.model_selection import train_test_split
from sklearn.MODULE import CLASSIFIER
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = CLASSIFIER()
model.fit(X_train, y_train)
performance = model.score(x_test, y_test)



Logistic Regression

100 patients with surgical site infections.

We’ve measured how many bacteria are 
present in the wound (bacterial load)

Each wound is treated with the same amount 
of cefoxitin (antibiotic)

We want to predict whether treatment is 
successful or not (y=1 or y=0) based on 
bacterial load (x)

Linear regression not appropriate: 

Predicts y < 0 and y > 1

Heteroscedasticity

Solution: Logistic Regression We can round   y to get our 1 or 0 prediction

sigmoid = lambda z: 1 / (1 + np.exp(-z))



Logistic Regression
def log_loss(y_true, y_pred):

return -(1/len(y_true)) * np.sum(\

y_true * np.log(y_pred)

+ (1 - y_true) * np.log(1 - y_pred))

learning_rate = 0.1

for i in range(num_iterations):

linear_model = np.dot(X, slope) + intercept

y_pred = sigmoid(linear_model)

ds = (1/m) * np.dot(X.T, (y_pred - y))

di = (1/m) * np.sum(y_pred - y)

slope = slope - learning_rate * dw

intercept = intercept - learning_rate * db

cost = log_loss(y, y_pred)

Our linear regression loss/cost needs updated:

Use log-loss instead:

Fit LR using gradient descent:



Scikit-Learn makes this very simple!
def log_loss(y_true, y_pred):

return -(1/len(y_true)) * np.sum(\

y_true * np.log(y_pred)

+ (1 - y_true) * np.log(1 - y_pred))

learning_rate = 0.1

for i in range(num_iterations):

linear_model = np.dot(X, slope) + intercept

y_pred = sigmoid(linear_model)

ds = (1/m) * np.dot(X.T, (y_pred - y))

di = (1/m) * np.sum(y_pred - y)

slope = slope - learning_rate * dw

intercept = intercept - learning_rate * db

cost = log_loss(y, y_pred)

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X_train, X_test, 
y_train, y_test = train_test_split(X, y, test_size=0.2, 

      random_state=42)

lr = LogisticRegression()
lr.fit(X_train, y_train)
performance = lr.score(x_test, y_test)

Many different options e.g., regularisation 



Many model choices => comparing and tuning

Using test set to tune/compare 
will lead to overfitting

Cross-validation: split training 
into pieces and train on ⅘ and 
compare on ⅕ (repeat for 
mean/variance estimate)



Machine Learning Cross-Validation

from sklearn.linear_model import LogisticRegressionCV

from sklearn.model_selection import train_test_split

X_train, X_test, 
y_train, y_test = train_test_split(X, y, test_size=0.2, 

      random_state=42)

lr = LogisticRegressionCV(cv=5, random_state=42)

lr.fit(X_train, y_train)

performance = lr.score(x_test, y_test)



Unsupervised Learning: Clustering



Clustering as an optimization problem
Using a glider with a shadowgraph camera we’ve taken images of 
lots of fish and then measured their lengths and widths.

Now we want to group these fish into size categories to explore 
trophic sizes 

Find k-centroids (cluster centers) that minimise the total distances 
from n data points

import numpy as np

X = np.column_stack((fish_lengths, 

fish_widths))

x2

x1



Many different clustering algorithms

https://scikit-learn.org/stable/modules/clustering.html



Clustering as an optimization problem: k-means

rng = np.random.default_rng(42)

k = 3

centroids = np.random.choice(X.shape[0], 

      k, 

      replace=False)

centroids = x[centroids]



Clustering as an optimization problem: k-means

def dist(point1, point2):

return np.sqrt(np.sum((point1 - point2) ** 2))

while True:

centroid_hist = [ centroids ]

clusters = [[] for _ in centroids]

for fish in X:

i = np.argmin([dist(fish, c) for c in centroids])

clusters[i].append(fish)



Clustering as an optimization problem: k-means

while True:

centroid_hist = [ centroids ]

clusters = [[] for _ in centroids]

for fish in X:

i = np.argmin([dist(fish, c) for c in centroids])

clusters[i].append(fish)

for ix, cluster in enumerate(clusters):

centroids[ix] = np.mean(cluster, axis=1)



Clustering as an optimization problem: k-means

while True:

centroid_hist = [ centroids ]

clusters = [[] for _ in centroids]

for fish in X:

i = np.argmin([dist(fish, c) for c in centroids])

clusters[i].append(fish)

for ix, cluster in enumerate(clusters):

centroids[ix] = np.mean(cluster, axis=1)

if centroids == centroid_hist[-1]:

break

centroid_hist.append([centroids])



Clustering as an optimization problem: k-means

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, n_init="auto")

kmeans.fit(X)

kmeans.labels_

array([1, 1, 1, 0, 0, 2], dtype=int32)

kmeans.predict([[0, 0], [12, 3]])

array([1, 0], dtype=int32)

kmeans.cluster_centers_

array([[10.,  2.], [ 1.,  2.], [ 3., 4.]])



Looking at really high-dimensional data?



Pairplots useful but only pairwise so miss complex shapes 



Many dimensions to few: Manifold learning, Ordination, 
Decomposition, Dimensionality reduction



Why is this hard?



High dimensional data is sparse

https://medium.com/analytics-vidhya/the-curse-of-dimensionality-and-its-cure-f9891ab72e5c



High dimensional space is counterintuitive
Orthogonality -> Band-size to capture 99% of the volume of a sphere:

Mass becomes increasingly “shell-like”



No representation is perfect



So, how can we do it?



Reorient the data in the direction of maximal 
variance

1. Center the data
2. Calculate the covariance matrix
3. Perform eigendecomposition
4. Sort and select n principal components
5. Project the data onto the reduced space

Principal Component Analysis - Simplest Method

X_centered = X - np.mean(X, axis=0)

cov_matrix = np.cov(X_centered, rowvar=False)

eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)

idx = np.argsort(eigenvalues)[::-1]

components = eigenvectors[:, idx[:n_components]]

X_reduced = X_centered @ components

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)

https://www.biorender.com/template/principal-component-analysis-pca-transformation



Trying to conserve global and local structure

● Single-cell RNA-seq tells us how much 
each of millions of cells are expressing 
10,000s of genes

    gene1, gene2, gene3, gene4…

Cell 1 = [  0.2,      0.5,       1.0,    0.01…]

Cell 2 = [  1.0,      0.5,       0.2,    0.91…]

● Lots of types of cells and lots of variability 
in what cells are doing

● Don’t know what each type of cell is during 
sequencing

● Need to cluster/project all this noisy data 
to lower dimensions to identify patterns

https://www.nature.com/articles/nmeth.2764



t-SNE (stochastic neighbour embedding) and UMAP

from sklearn.manifold import TSNE
X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
model = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3)
X_embedded = model.fit_transform(X)
X_embedded.shape
[4, 2]

● Pairwise probability distribution in all dimensions
● Pairwise probability distribution in few dimensions
● Stochastic minimisation of KL divergence 

between distributions 

https://www.scdiscoveries.com/blog/knowledge/what-is-t-sne-plot/



Summary

● Machine Learning: training models with label
● Scikit-Learn easy to use with great documentation/tutorials
● Supervised Learning: predicting output label (number or class) from data

○ Logistic Regression - linear regression with a sigmoid function and gradient descent
○ Split data into training and test data to evaluate generalisability of model
○ Cross-validation is used to tune a model/compare models without overfitting to test data

● Unsupervised Learning: finding structure in data without using labels
○ Clustering - inferring clusters in your dataset

■ K-means - pick k random points as “centroids” and move them to minimise the average 
distance of all points from these centroids.

○ Embeddings/Projections - finding a lower dimensional representation of the original data
■ PCA - use eigendecomposition of covariance matrix to rotate data in orthogonal axes of 

maximal variation
■ t-SNE - move points around randomly to minimise difference between multivariate 

probability distribution in original dimension and lower dimensional embedding


